

SmartCHP final conference Cogenerating a renewable future The role of small-scale bioCHP in Europe's Energy mix

BLAZE & SO-FREE projects

Enrico Bocci
University Guglielmo Marconi (USGM)

CHP IN EU-28 (Eurostat)

- 120 GWe (ST 50%, CC 25%, ICE 13%, GT 10%): 362 TWh -> ≈3000 AEh (≈ 11% of electricity demand).
- 300 GWth: 775 TWh -> ≈ 2500 AEh
- <u>space</u> heating ≈ 50% <u>process</u> heating (Germany, Italy, Poland and the Netherlands largest capacity)
- Natural gas ≈ 50%, solid fossil fuels and peat ≈ 20%, oil and oil products 5%, biomass (timber by-products, black liquor, wood, straw, animal waste, OFMSW) attained 20% but there is difficulty in converting different biomass feedstocks in a Reliable and Economic (Efficient and Clean) way
- Zero Energy Buildings (ZEB&ZED) from 31st December 2020 (public buildings from 31st December 2018)

CHP SoA & BLAZE foreseen goals

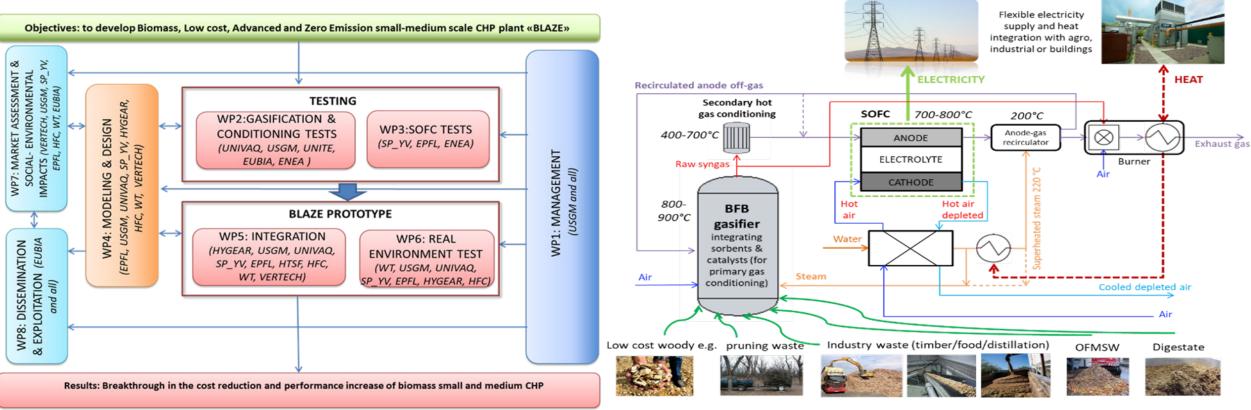
Below 1 MWe systems mainly applied:

- 1. Biomass combustor coupled to organic rankine cycle (ORC)
- 2. Biomass fixed bed gasifier coupled to internal combustion engine (ICE)

BLAZE 100 (100 kWth biomass DBFBG integrated with 50 kWe SOFC) is compared to a 100 kWth biomass combustor coupled to a 15 kWe ORC and a 100 kWth biomass fixed bed gasifier coupled to a 25 kWe ICE

Cost of a gas boiler with burner, flue tubes and accessories is added to the CHP plants cost. To this item, heating civil works, piping, pump, expansion vessel and regulation system have been added.

Buildings heat price: <u>0.06 €/kWht (AEh: 3000 electrical and 2500 thermal</u>) Industrial heat price: <u>0.04 €/kWht (AEH: 7500 electrical and thermal</u>).


Biomass price: <u>60 €/ton</u> (similar to the price of high humidity wood chips for BLAZE) <u>100 €/ton</u> (similar to the price of low humidity wood chips for ORC and ICE systems).

BLAZE: overall <u>90% (versus 65%, target SET-PLAN 75%)</u>, electrical <u>50% (versus 25%, target SET-PLAN >30%)</u>, near-zero gaseous and PM emissions, <u>CAPEX below 4,000 €/kWe</u> (actual 10,000 €/kWe), <u>OPEX of ≈ 0.05 €/kWhe</u> (actual 0.10 €/kWhe), electricity production cost <u>0.10 €/kWh</u> (actual 0.22 €/kWh, SET-PLAN target of 20% cost reduction by 2020, and 50% by 2030).

BLAZE OBJECTIVES & SCHEME

Research Partners

Companies Partners

N.P. Partners

etaflorence **
renewableenergies

BLOVE: BIOMASS ASSESSMENT, GASIFICATION AND

CONID	NITIC	ALLA	
COND	טו ו וע	יוואוע	U

Feedstock	CATEGORY	Humidity (%- wt, as received)	LHV MJ/kg	Ash ‰t, dry basis	S %wt, dry basis	Cl %wt, dry basis	Ash melting T (DT) (°C)
Subcoal	Municipal waste	3,20	21,68	15,60	0,10	1,00	1250,00
Olive pomace pitted	Secondary residues of industry utilising agricultural products	36,30	19,79	5,95	0,06	0,08	1290,00
Sawmill waste	Primary residues from forest	11,20	18,89	0,41	<0.01	<0.01	1300,00
Multi-essence wood chips	Waste from wood	24,50	17,88	1,45	0,02	<0,01	1370,00
Olive Prunings	Secondary residues from wood industries	14,90	17,76	1,55	<0.01	<0.01	1380,00
Almond shells	Secondary residues of industry utilising agricultural products	10,00	17,68	1,31	<0.01	<0.01	1000,00
Swarf and sawdust	Secondary residues from wood industries	6,60	17,14	0,43	<0.01	<0.01	>1385
Wood chips	Primary residues from forest	8,90	16,74	0,54	<0.01	<0.01	>1385
Corn cobs	Agricultura l residues	9,00	16,62	3,04	0,03	0,44	645,00
Arundo Donax	Agricultura l residues	10,10	16,25	3,43	0,11	0,29	1185,00
1- Wheat Straw (pellets 10 mm)	Agricultura l residues	7,60	15,98	9,22	0,05	0,12	1065,00
2- Wheat Straw (pellets 6 mm)	Agricultura l residues	7,60	15,40	13,29	0,08	0,21	1135,00
Rice husks	Secondary residues of industry utilising agricultural products	5,20	15,19	14,70	0,02	0,03	990,00
Digestate	Digestate from biogas production	71,20	12,69	25,81	0,97	0,10	1245,00
Black Liquor	Secondary residues from wood industries	20,60	11,20	48,28	0,74	0,12	680,00
Municipal solid waste	Municipal waste	23,00	10,22	47,01	0,20	0,40	1220,00

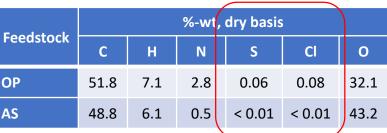
						Т	OT	ΆL	Α	VΑ	ILΑ	BL	E E	3IC	M	AS	S (kΤα	on/	ye	ar))							
1	20,000.00																												
1	00,000.00																												
	80,000.00										₽	٠																	
	60,000.00										+	+										_					_		
	40,000.00										Н	Н										н					1	-	
	20,000.00									Н	Н	н	-			н	_					н		н			Н	Н	+
	0.00					_														_									
		AUSTRIA	BELGIUM	BULGARIA	CROATIA	CYPRUS	REPUBLIC	DENMARK	ESTONIA	FINLAND	FRANCE	GERMANY	GREECE	HUNGARY	IRELAND	ITALY	ATVIA	ITHUANIA	.UXEMBOURG	MALTA	NETHERLANDS	POLAND	PORTUGAL	ROMANIA	SLOVAKIA	SLOVENIA	SPAIN	SWEDEN	Θ
		-SO	ELG	/97	RO,	CYP	PU	$\frac{\mathbb{Z}}{\mathbb{Z}}$	STC	Z	FRA	₩.	GRE	NG	REL		A	₽	BOI	Ž	RLA	Ŏ	Ξ	Σ	0	OVE	SF	WE	d d
		⋖	В	BU	O		H R	DE	ш	ш		ЭĒ		\exists	=			Ē	ΈM		퓓		PO	80	SL	SL		S	Ž
							CZECH												î		R								UNITED KINGDOM
							Ü																						N N

CATEGORY	potential (Kton dry mass/y)
Agricultural residues	264986,32
Primary residues from forest	167641,91
Municipal waste	89763,53
Secondary residues from wood industries	87906,47
Secondary residues of industry utilising agricultural	
products	29527,11
Waste from wood	26418,22
Digestate from biogas production	12634,60

CATEGORY	cost €/ton
Waste from wood	15
Agricultural residues	28
Primary residues from forest	35
Secondary residues from wood industries	35
Secondary residues of industry utilising agricultural	
products	55
Municipal waste	60
Digestate from biogas production	661

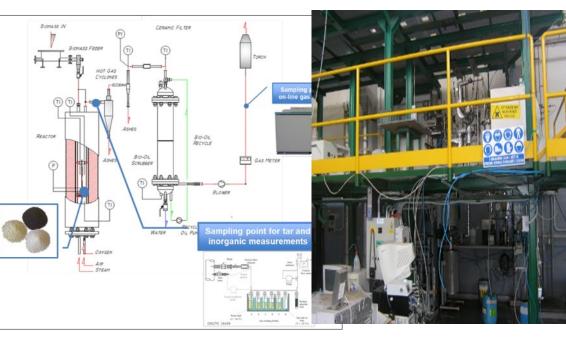
BLOVE; WP2: BIOMASS ASSESSMENT, GASIFICATION AND

CONDITIONING



Olive pomace

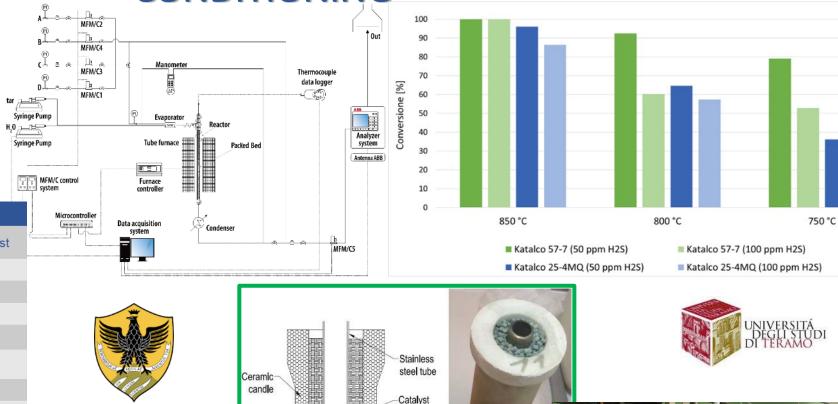
	Feedstock
	ОР
Almond shells	AS

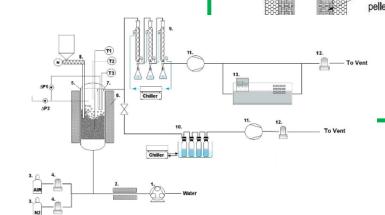


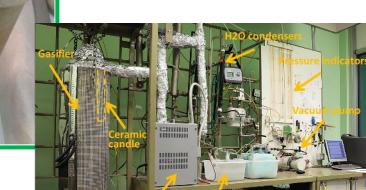
- > Bed material (i.e. olivine, calcined dolomite)
- > In-bed sorbents (i.e. calcined dolomite, Na2CO3, K2CO3)

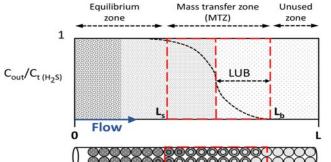
In had implementation	Observed	d Effect
In-bed implementation	Olive Pomace	Almond shells
Primary additives		
Na ₂ CO ₃ , K ₂ CO ₃ : x 100 stoich.	1- Reduction of HCl content around \approx 10-100 mg/Nm 3 _{dry} (s 510 mg/Nm 3 _{dry} (theoretical value).	1- Reduction of HCl content < 20 mg/Nm ³ _{dry} vs 55 mg/Nm ³ _{dry} (theoretical value)
c-Dolomite (0-45 %-wt)	1- Appreciable effect on gas composition (H2 enrichment, from 25 %-v up to 35 %-v, N2-free); 2- Important effect on Tar content reduction (%-eff: > 45%-wt on Tot GCMS: 25 g/Nm³ _{dry} vs 13.7 g/Nm³ _{dry} ; Benzene, Toluene, Naphthalene ≈ 1000s mg/Nm³ _{dry}); 3- H ₂ S content reduced to tens/few mg/Nm³ _{dry} (vs 320 mg/Nm³ _{dry} (theoretical value);	1- No appreciable effect on gas composition (H2 content ~ 35 %-v, N2-free); 2- Important effect on Tar content reduction (%-eff: > 50%-wt on Tot GCMS: 28 g/Nm³ _{dry} vs 10 g/Nm³ _{dry} ; Benzene, Toluene, Naphthalene ≈ 1000s mg/Nm³ _{dry}) 3- H₂S content reduced to tens/few mg/Nm³ _{dry} vs 27 mg/Nm³ _{dry} (theoretical value);
Steam/Biomass (OLV)		
0.5 vs 1.0	1- H_2 enrichment (H_2 : 25 \rightarrow 35 %-v, N2-free basis); 2- limited reduction on light hydroc. content (i.e. $CH_4 + C_2H_x$); 3- lower effect on the reduction of tar content 25 g/Nm ³ _{dry} (~ 30% based on Tot GCMS);	1- H_2 enrichment (H_2 : 35 \rightarrow 45 %, N2-free basis); 2- No effect evidence on light hydroc. content (i.e. $CH_4 + C_2H_\chi$); 3- lower effect on the reduction of tar content 28 g/Nm ³ _{dry} vs 19 g/Nm ³ _{dry} (\sim 30% based on Tot GCMS);
Equivalence Ratio		
0.25 vs 0.30	1- Minimal effect on gas composition (CO2 %-v increase);2- Limited effect in the tar content (~ 15-20%-wt on Tot GCMS);	1- Minimal effect on gas composition (CO2 %-v increase);2- Limited effect in the tar content (~ 15%-wt on Tot GCMS);

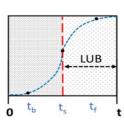

(mg/Nm3 dryN2free)


WP2: BIOMASS ASSESSMENT, GASIFICATION AND

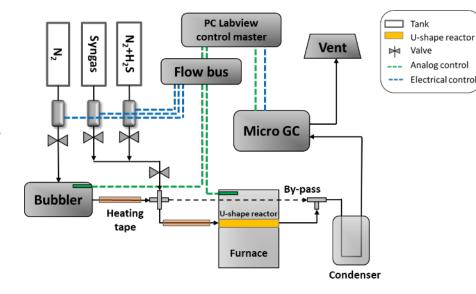



CONDITIONING




WP2: BIOMASS ASSESSMENT, GASIFICATION AND

CONDITIONING


Experimental Conditions	1	II .
Gas flow	Syng	;as*
Sorbent (g)	0.5–0	0.25
T (°C)	450-	600
P (bar)	0.95-	1.05
GHSV (10 ³ h ⁻¹)	25–	50
\mathcal{C}_{H_2S} (ppmv)	400	260
BL (cm)	0.8-	1.5
Bed L/D index	1-1	1.9
Particle size (mm)	1.5-	-3.0
Total flow (NmL min ⁻¹)	305	± 1

Paper published in
Energies journal : E.
Ciro, A. Dell'Era, A.
Hatunoglu, L. Del Zotto,
E. Bocci
Kinetic and
Thermodynamic Study of
the Wet Desulfurization
Reaction of ZnO
Sorbents at High
Temperatures

- ZnO sorbents showed the best performances of absorption capacity of the at 550
 °C, achieving a sorption
 capacity of 5.4 g per 100 g of sorbent and a breakthrough time of 2.7 h.
- These materials also have been shown acceptable results up to 600 °C.
- A water-gas shift (WGS) and a catalytic reactions was observed on the ZnO performance.
- From thermodynamic analysis, the endothermic features for the deactivation reaction was observed and thermodynamic calculations for enthalpy, entropy, activation energy and diffusion coefficient were calculated.
- The modelling of the bed fixed reactor and subsequent estimations of bed reactor were carried out to sizing the dimensions of a fixed bed reactor.

BLADE WP3: SOLID OXIDE FUEL CELLS (SOFC) TESTS

2-ring tar Napthalene

Low

25

term H₂S 3ppm naphthalene 15ppm

100

80

High

15

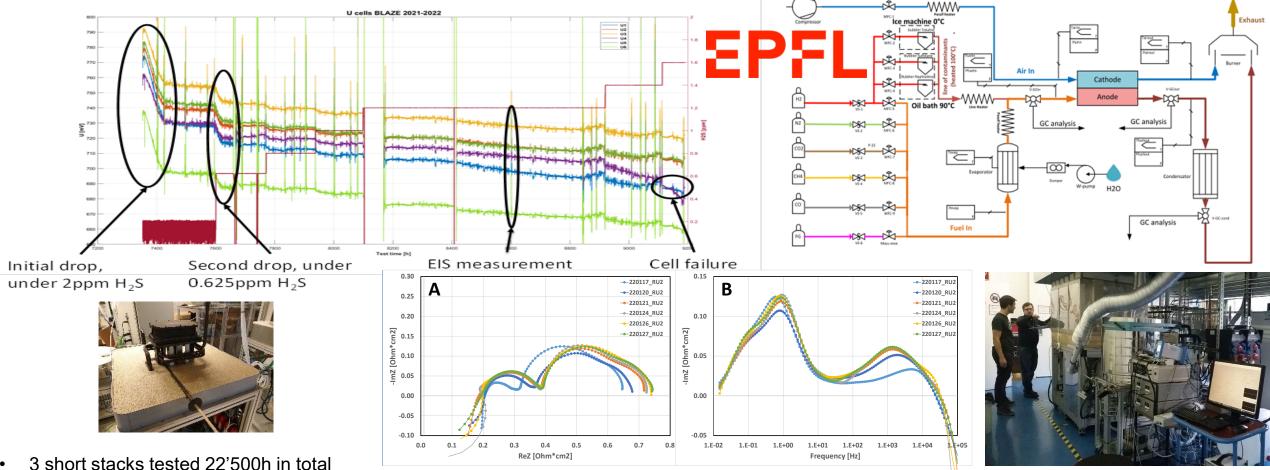
85

68 mV

120

Contaminant thresholds	н	₂ S		ng tar uene
	Low	High	Low	High
ppm(v)	1	3	60	180
mg/Nm3 (dry)	-	-	250	750
0.030 H2S 3 ppm 0h @ 0.5 Acm ² H2S 3 ppm 24h @ 0.5 Acm ² H2S 3 ppm 48h @ 0.5 Acm ² H2S 3 ppm 120h @ 0.5 Acm ²	P ₂	0.7 - 0.6 - 0	20	40 60 t (h)
0.9	40 60	m H ₂ S 1ppm Tol 60ppn		olydEra •

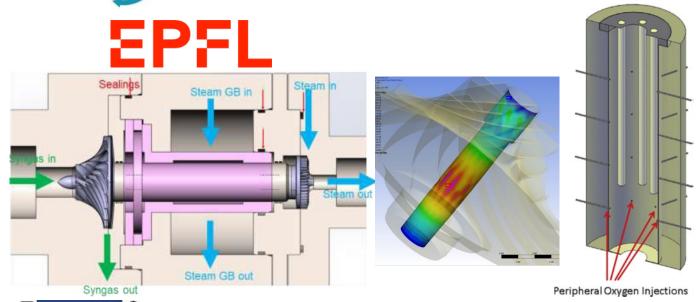
t (h)

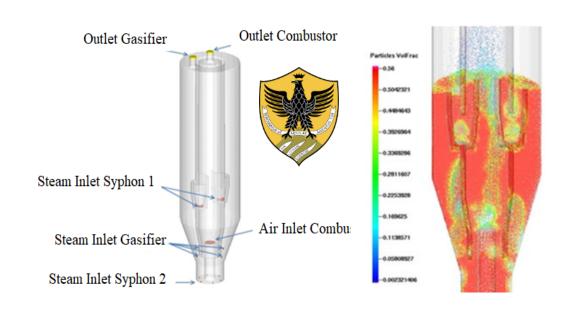


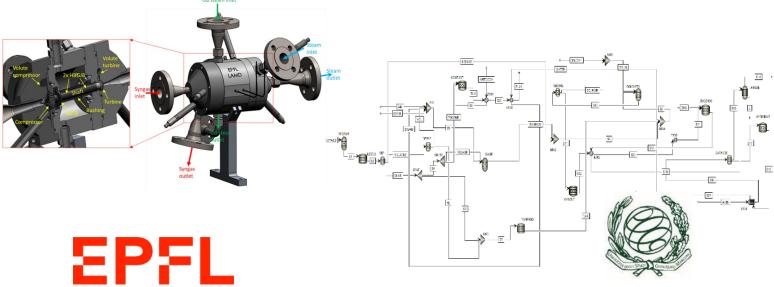
- Several tests were performed to analyse single and multi-contaminant impact on syngas-fed SOFC
- The multi-contaminant tests generally confirm the results obtained from the singlecontaminant (H2S mainly affecting charge transfer; tars affecting R0 and diffusion but also charge transfer)
- R0 mobility was observed for the tar-laden syngas compositions, possibly due to Cdep which induces a dynamic effect on RO
- Tar presence (in smaller concentrations and with cells with higher initial voltage) seem to mitigate the H2S poisoning (possibly due to a concomitant activity of Ni for tar reforming). This is however not observed for all samples, being related to H2S/Tar ratio and Tar typology

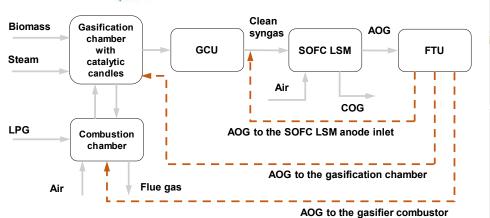
BLADE WP3: SOLID OXIDE FUEL CELLS (SOFC) TESTS

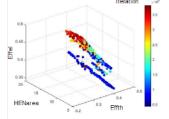
SolvdEra

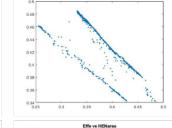


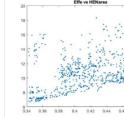

- 3700h of impurities exposure Sulfur (DMS): $0.2 \rightarrow 4$ ppm Light tar (Toluene): $20 \rightarrow 400$ ppm Halogen (HCl): $5 \rightarrow 50$ ppm
- EIS under nominal polarization DRT analysis
- stable operation in clean syngas (9000h) -3.4 µV/h (-0.4%/kh)
- S deactivates Ni starting from 0.2ppm (30ppb) Affects CT and RWGS 9% voltage drop at 4ppm Co-feed of toluene mitigates S-contamination Partial recovery (logarithmic) 50% in 33h 80% in 250h
- HCl leads to irreversible degradation (-60 µV/h) for 5-50ppm


WP4: MODELING AND PILOT DESIGN





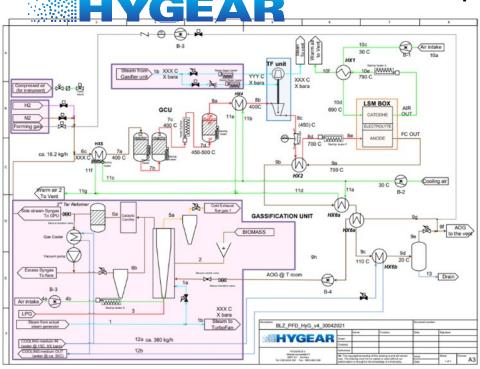


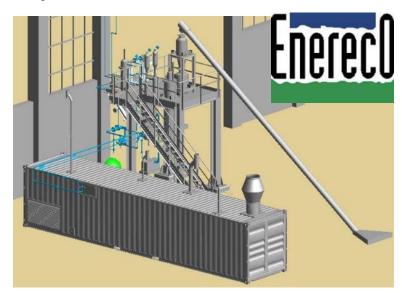

WP4: MODELING AND PILOT DESIGN

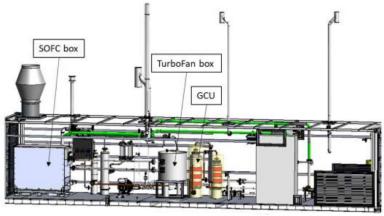
			Effe	VS HEN	larea		
20	,	- 1			,		
18							
16 -					*		1
14		4	٠.	1	à.,	1.	
12		-33	1	1	300	L.M.	1
10 -				×.	10	3,74	189
8 4	A	201			7		
6 74	-						

	AGG to the	guomer comb	45101	025 03 0	5 0.34 0.36	
	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
Gross power SOFC (kW)	25	25	25	25	25	25
Gross power turbine (kW)						8.973
Air compressor (gasifier) (kW)	0.291	0.363	0.316	0.327	0.226	0.292
Air compressor (SOFC) (kW)	0.663	0.746	0.611	0.663	0.663	0.663
AOG compressor (kW)	0	0.098	0.123	0.129	0	1.361^{1}
Pumps (kW) ²	6.00E-05	3.24E-03	6.12E-04	6.00E-05	6.00E-05	1.00E-03
Net power (kW)	24.046	23.788	23.947	23.877	24.106	31.656
CGE	0.73	0.75	0.68	0.68	0.75	0.73
SOFC efficiency	0.50	0.47	0.50	0.50	0.50	0.50
Eff _{el}	0.34	0.37	0.39	0.38	0.44	0.45
Cooling water produced (kg/h)	189.68	213.61	174.52	189.68	189.68	189.68
Cooling water produced (kW)	9.51	10.72	8.75	9.51	9.51	9.51
Cold utility (kW)	6.23	8.06	18.75	18.35	4.72	17.41
Eff _{th}	0.22	0.28	0.45	0.45	0.25	0.38
Total efficiency (Eff _{el} + Eff _{th})	0.57	0.65	0.83	0.83	0.69	0.84
FTU						
ΔP (mbar)		250	60		270	
Steam needed (kg/h)		19.85	3.75		10.19/16.50	
Inlet fan T (°C)		200	200		20/200	
Total power needed from turbine (kW)		0.315	0.060		0.162/0.209	

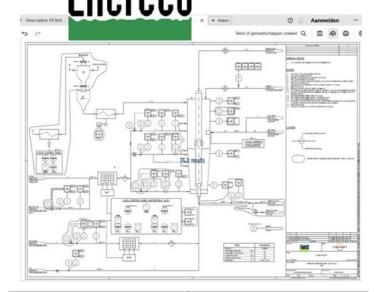
Name	Description
Case 1	Base case; BLAZE plant without AOG use.
Case 2	AOG recirculation to the gasification chamber.
Case 3	AOG recirculation to the SOFC LSM anode inlet.
Case 4	AOG recirculation to the gasifier combustor without FTU.
Case 5	AOG recirculation to the gasifier combustor with FTU.
Case 6	AOG used in a GT.

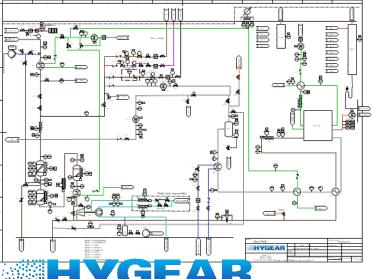

Variable / criterion	Distance utopian	Eff _{el}	Eff _{th}	HEN area
FU	0.780	0.800	0.715	0.746
STB	0.333	0.330	0.967	0.330
Tgasif (°C)	782.475	751.173	837.502	839.452
TinSOFC (°C)	690.000	690.391	697.473	690.022
TC2 (°C)	28.705	25.873	26.207	186.869
TH1 (°C)	550.054	745.798	132.408	101.537
TH6S (°C)	321.274	398.596	356.899	221.770
TC1 (°C)	279.412	200.000	236.054	428.615
TH2 (°C)	642.955	550.967	634.334	626.737
TH3 (°C)	508.714	756.581	245.333	263.241
Eff _{el}	0.4547	0.4873	0.3443	0.3493
Eff _{th} *	0.3558	0.3052	0.4736	0.4093
Eff _{tot}	0.8105	0.7925	0.8179	0.7587
Area (m²)	9.980	11.543	13.614	6.727
Steam generated (kg/h)	14.606	10.027	29.977	26.360
Cooling water produced (kg/h)	155.826	153.954	190.537	161.233
Steam to gasifier (kg/h)	3.261	3.158	10.696	3.371
LPG (kg/h)	0.173	0.000	0.902	1.196
Recirculation compressor (kW) @ TC2	0.122	0.115	0.153	0.360
Steam needed in the FTU (kg/h) @ TC2	9.63	9.13	12.10	28.05
Steam needed in the FTU (kg/h) @ 200°C	15.11	14.35	19.05	1

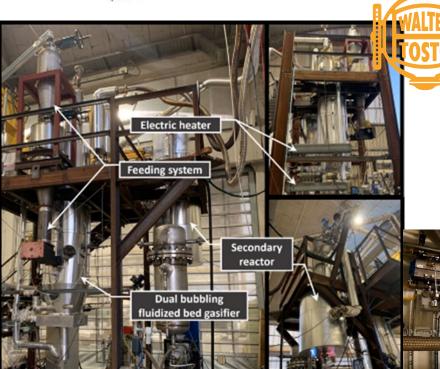

WP5 INTEGRATION



Overall CHP pilot system: Gasification unit + CHP sub-units

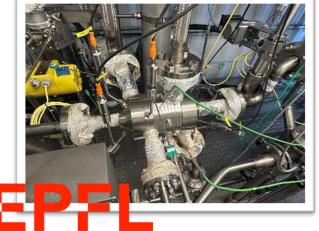


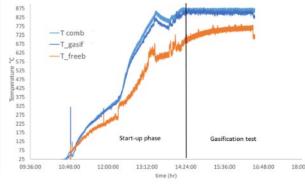

- Doubla Bubbling Gasifier/Combustor
- Gas cleaning unit (GCU)
- Turbo-fan/steam driven compressor (TF)
- 25 kWe Large Stack Module (LSM)
- Anode off gas post-processing section BoP, PID, HAZID, HAZOP done!

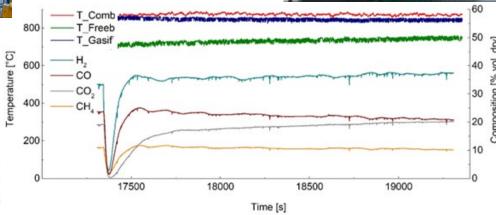


http://www.blazeproject.eu/

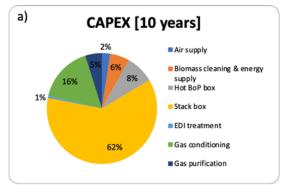
WP6 REAL ENVIRONMENT TEST

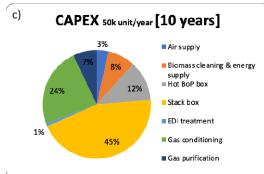






WP7: TECHNO-ECONOMIC, SOCIAL AND ENVIRONMENTAL ASSESSMENT


0.069333


0.062573

0.022646

0.069333

0.022646

	Unit		Conventional electricity plant		Rough SOFC system	S	tailed OFC stem	SOFC in future based on database		Ideal case for BLAZE			
Climate change impact	kg CO2 eq		0.77		0.32738	0.3	33863 0.33		901	0.19498			
Ecosystem quality	PDF.m2.yr		0.14441		-2.41656	-2.4	-2.41444		1358	-2.45441			
Human health	DALY		1.96E-07	7	2.57E-07	2.77E-07		2.43E-07		3.49E-07			
Water scarcity	m3 world-e	eq	0.04115		0.01948	-0.0	00355	0.02266		0.01825			
Ozone layer depletion	kg CFC-11	eq	1.83E-0	7	5.76E-08		1E-08	5.81E-08		9.33E-09			
	25 kW	50 kW	/ 100 kW	500 kW	1 MW	5 MW	MW 1 MW with 10 years stack lifetime		lifetime+fr	1 MW with 10 years stack lifetime+future price+2 years maintanence			
No allocation - Do not consider co-generation feature													
CAPEX / 1 kWh electricity OPEX / 1 kWh electricity	0.390736	0.2709			44339	0.195363	195363 0.104556 0.104556 0.094361			,			
5	With economic allocation - Consider co-generation feature												

Heat production

0.053969 0.045098 0.042313

0.259105 0.179653 0.165236

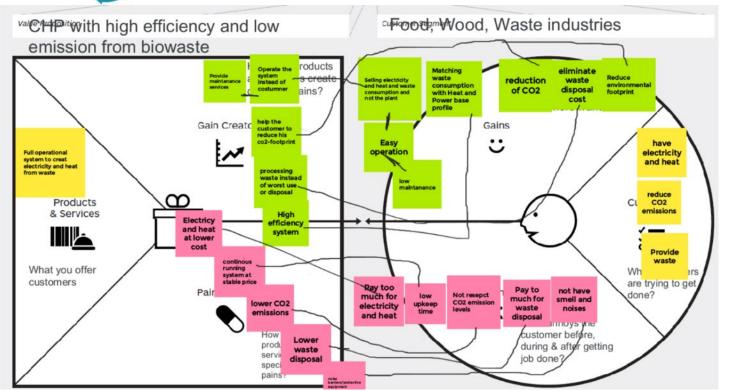
0.084629 0.058678 0.053969

✓ BLAZE pilot plant 0.31 kg CO2 – eq, 50 % reduction compared with mature electricity generation technology. After reasonable improvement, BLAZE emits 0.19 kg CO2 – eq. (better heat integration, self-produced **steam**, biofuel instead of **LPG**, renewable electricity, **catalyst** production and lifetime)

CAPEX / 1 kWh electricity

OPEX / 1 kWh electricity

CAPEX / 1 kWh heat


OPEX / 1 kWh heat

Biomass and maintenance contribute the most in OPEX. Electricity contributes 66% of overall revenues. Economic allocation method is important and necessary to use. BLAZE system has the potential to reach 0.1 Euro/ 1 kWh electricity, 0.04 Euro/ 1 kWh heat (cheaper than the market price), reach BLAZE proposed target. BLAZE shows more competitivity marketplace when the plant size is big, and it can deliver heat and electricity continuously (CHP).

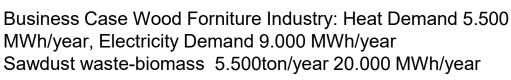
WP8: Dissemination and Exploitation

Strengths

- · CHP is energy efficient
- Storage
- · Blaze has good Bio CHP characteristics
- Smaller size

Weaknesses

- Complex plant (leading also to higher CAPEX and O&M costs)
- Limited no. of operational hours leading reliability
- Biomass supply



- Objections of decisionmakers
- CAPEX of standard CHP

Opportunities

- Global energy crisis
- Local autonomy is trendy
- Reduction of CO2 and emissions
- Climate change increasingly actual

	CASE 1		CASE 2		CASE 3		CASE 4	
Investment	€	11,135,616.03	€	8,814,258.58	€	6,254,416.20	€	11,135,616.03
Cash Flow (Year 1)	€	1,919,304.22	€	1,913,212.58	€	1,567,033.89	€	2,074,064.22
LSM cost replacement @y10	€	7,950,000.00	€	6,000,000.00	€	3,900,000.00	€	7,950,000.00
IRR (Internal Rate of Return)		0.09		0.15		0.19		0.11
NPV - Net Present Value	€	20,957,466.77	€	22,072,590.67	€	18,701,478.17	€	23,040,878.45

Technology roadmap: Reduce the plant and single equipment costs, Optimize the overall plant cost defining a modular standard size, Cumulate operational manhours for increasing reliability and availability, LSM costs drive the economics (LSM 4.000 €/kWe 5 years lifetime).

Business Model: ESCO Model seems to be a viable solution for medium scale plants and in general for customers like industries

University Guglielmo Marconi (USGM)

Enrico Bocci

E-mail: e.bocci@unimarconi.it

The official BLAZE website https://www.blazeproject.eu

Platform: www.blazeproject.eu/biocogen-2030/

BLAZE social media (Twitter, Linkedin and Facebook):

Blaze (@BlazeProject) Twitter / LinkedIn /Facebook